cummin() - Signal Processing
M = cummin(A) returns
the cumulative minimum elements of A. By default, cummin(A) operates
along the first array dimension whose size does not equal 1.If A is a vector, then cummin(A) returns
a vector of the same size containing the cumulative minima of A.If A is a matrix, then cummin(A) returns
a matrix of the same size containing the cumulative minima in each
column of A.If A is a multidimensional array,
then cummin(A) returns an array of the same size
containing the cumulative minima along the first array dimension of A whose
size does not equal 1.exampleM = cummin(A,dim) returns
the cumulative minima along the dimension dim.
For example, if A is a matrix, then cummin(A,2) returns
the cumulative minima along the rows of A.exampleM = cummin(___,direction) optionally
specifies the direction using any of the previous syntaxes. You must
specify A and, optionally, can specify dim.
For instance, cummin(A,2,'reverse') returns the
cumulative minima of A by working from end to beginning
of the second dimension of A.
Syntax
M = cummin(A) exampleM = cummin(A,dim) exampleM = cummin(___,direction) example
Example
Cumulative Minimum Values in VectorOpen This Example
Find the cumulative minima of a 1-by-10 vector of random integers.v = randi([0,10],1,10)
v =
8 9 1 10 6 1 3 6 10 10
M = cummin(v)
M =
8 8 1 1 1 1 1 1 1 1
Cumulative Minimum Values in Matrix ColumnsOpen This Example
Find the cumulative minima of the columns of a 3-by-3 matrix.A = [3 5 2; 1 6 3; 7 8 1]
A =
3 5 2
1 6 3
7 8 1
M = cummin(A)
M =
3 5 2
1 5 2
1 5 1
Cumulative Minimum Values in Matrix RowsOpen This Example
Find the cumulative minima of the rows of a 3-by-3 matrix.A = [3 5 2; 1 6 3; 7 8 1]
A =
3 5 2
1 6 3
7 8 1
M = cummin(A,2)
M =
3 3 2
1 1 1
7 7 1
Cumulative Minimum Array Values in Reverse DirectionOpen This Example
Calculate the cumulative minima in the third dimension of a 2-by-2-by-3 array. Specify direction as 'reverse' to work from the end of the third dimension to the beginning.A = cat(3,[1 2; 3 4],[9 10; 11 12],[5 6; 7 8])
A(:,:,1) =
1 2
3 4
A(:,:,2) =
9 10
11 12
A(:,:,3) =
5 6
7 8
M = cummin(A,3,'reverse')
M(:,:,1) =
1 2
3 4
M(:,:,2) =
5 6
7 8
M(:,:,3) =
5 6
7 8
Output / Return Value
Limitations
Alternatives / See Also
Reference