You are here : matlab → Image Processing → tforminv
# tforminv() - Image Processing

### Syntax

### Example

### Output / Return Value

### Limitations

### Alternatives / See Also

### Reference

[U,V] = tforminv(T,X,Y) applies the 2D-to-2D inverse transformation defined in TFORM structure T to coordinate arrays X and Y, mapping the point [X(k) Y(k)] to the point [U(k) V(k)]. Both T.ndims_in and T.ndims_out must equal 2. X and Y are typically column vectors matching in length. In general, X and Y can have any dimensionality, but must have the same size. In any case, U and V will have the same size as X and Y.[U1,U2,U3,...] = tforminv(T,X1,X2,X3,...) applies the NDIMS_OUT-to-NDIMS_IN inverse transformation defined in TFORM structure T to the coordinate arrays X1,X2,...,XNDIMS_OUT (where NDIMS_IN = T.ndims_in and NDIMS_OUT = T.ndims_out). The number of output arguments must equal NDIMS_IN. The transformation maps the point[X1(k) X2(k) ... XNDIMS_OUT(k)]to the point[U1(k) U2(k) ... UNDIMS_IN(k)].X1,X2,X3,... can have any dimensionality, but must be the same size.U1,U2,U3,... have this size also.U = tforminv(T,X) applies the NDIMS_OUT-to-NDIMS_IN inverse transformation defined in TFORM structure T to each row of X, where X is an M-by-NDIMS_OUT matrix. It maps the point X(k,:) to the point U(k,:). U is an M-by-NDIMS_IN matrix.U = tforminv(T,X), where X is an (N+1)-dimensional array, maps the point X(k1,k2,...,kN,:) to the point U(k1,k2,...,kN,:). size(X,N+1) must equal NDIMS_OUT. U is an (N+1)-dimensional array, with size(U,I) equal to size(X,I) for I = 1,...,N and size(U,N+1) equal to NDIMS_IN.[U1,U2,U3,...] = tforminv(T,X) maps an (N+1)-dimensional array to NDIMS_IN equally-sized N-dimensional arrays.U = tforminv(T,X1,X2,X3,...) maps NDIMS_OUT N-dimensional arrays to one (N+1)-dimensional array.

[U,V] = tforminv(T,X,Y)[U1,U2,U3,...] = tforminv(T,X1,X2,X3,...)U = tforminv(T,X)[U1,U2,U3,...] = tforminv(T,X)U = tforminv(T,X1,X2,X3,...)

[X1(k) X2(k) ... XNDIMS_OUT(k)]